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Stability of a single vortex in a trapped Bose-Einstein condensate
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Abstract. We investigate the lowest state of a Bose-Einstein condensate with an off-center vortex state
that is confined in a rotating harmonic potential. Our results are consistent with the fact that any single
off-center vortex is unstable. Furthermore, a vortex state located at the center of the cloud first becomes
locally stable as the rotational frequency increases. Finally our study implies the existence of hysteresis
effects.

PACS. 03.75.Kk Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid
flow

1 Introduction

When rotated, a superfluid forms quantized vortex states.
Numerous studies have examined in the past vortices
in the traditional superfluid liquid helium-IV. Recently
in some remarkable experiments vortices have also been
created and observed in vapors of trapped ultracold
atoms [1–4].

One of the basic questions in atomic systems is the for-
mation and stability of vortex states. Because of the con-
finement (which is typically harmonic), there is a number
of differences as compared to homogeneous superfluids.
For example, the energy spectrum is discreet, the density
is inhomogeneous and finally for harmonic confinement
the frequency of rotation of the gas is limited by the trap
frequency.

Many studies have examined the physics of vortices
in trapped gases [5–16]. The basic picture is that above
a critical frequency of rotation of the trap, one vortex
state forms in the gas, while as the rotational frequency
increases further, more vortices enter the cloud, eventu-
ally forming an array. One of the most fundamental and
important questions is thus the way that the first vortex
state forms.

In the present study we develop a method which allows
us to examine this problem in the limit of weak interac-
tions, where the typical atom-atom interaction energy is
smaller than the oscillator quantum of energy and one
can restrict himself to the subspace of states in the low-
est Landau level. In this limit the gas has a very peculiar
property when the angular momentum per atom ranges
between zero and unity, as the interaction energy scales
linearly with the angular momentum [14,17–20], just like
as in an ideal gas. This is an exact result within the low-
est Landau level subspace of states. The linear behavior
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of the spectrum has important implications on the rota-
tional properties of the gas, as at a critical frequency of
rotation which is smaller than the trap frequency by a
(small) amount that is proportional to the ratio between
the interaction energy and the oscillator energy, the gas
is predicted to undergo a discontinuous phase transition
from the non-rotating state to a state with one vortex at
the center of the trap [14].

However, as we show below, inclusion of states beyond
the ones in the lowest Landau level implies that the en-
ergy of the gas does not increase linearly with the an-
gular momentum in general. In the present study we use
second-order perturbation theory to calculate the lowest-
order correction, for which the energy is no longer linear
and from the derived dispersion relation we identify the
minima of the energy of the gas in the rotating frame, for
a given rotational frequency of the trap Ω. Given this cal-
culation, we then analyse the rotational behavior of the
cloud.

Our study suggests that any single off-center vortex
state is unstable. Furthermore, a vortex state that is lo-
cated at the center of the cloud first becomes locally sta-
ble. We also predict that the gas comes to rest at a smaller
Ω than the one where rotation sets in (see Fig. 1), and the
system exhibits hysteresis [15], which is a general char-
acteristic of first-order phase transitions. The graphs in
Figure 1 show schematically the energy of the gas in the
rotating frame for certain physically-relevant rotational
frequencies which we calculate below.

The importance of our study is multifold: first of all,
it provides insight on the stability of a single vortex in
confined gases of atoms. Although this is one of the most
fundamental questions in the field of cold atoms, it has not
been understood fully. While the opposite Thomas-Fermi
limit of strong interactions has been attacked numeri-
cally, the limit we consider here is harder to be examined
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numerically, since for weak interactions the numerical
noise is comparable to the (very small) interaction en-
ergy. Furthermore, the diagrammatic perturbation theory
developed here allows us to identify the states which con-
tribute to the energy of the gas to first and second order.
Therefore, although the results which are presented here
are consistent with the ones in the Thomas-Fermi limit,
they provide a more complete picture of the problem of
vortex formation and vortex stability. Finally, our results
are even experimentally relevant, since it is now possible
to achieve the limit of weak interactions considered here.

2 Model

In our model we consider atoms interacting via a short-
range effective interaction,

Vint = U0

∑

i�=j

δ(ri − rj)/2. (1)

Here U0 = 4π�
2a/M is the strength of the effective two-

body interaction, where a is the scattering length for elas-
tic atom-atom collisions and M is the atom mass. We also
consider a harmonic trapping potential of the form

V (ρ, z) = Mω2(ρ2 + λz2)/2, (2)

where ρ and z are cylindrical polar coordinates, ω is the
oscillator frequency, and λ is a dimensionless constant
(� = M = ω = 1 from now on.)

We consider weak interactions and strong confinement
along the z-axis, which is taken to be the axis of rota-
tion. For weak interactions the corresponding dimension-
less quantity is γ = Na/dz which is our expansion pa-
rameter as it is assumed to be much smaller than unity.
Here N is the total number of atoms and dz is the oscilla-
tor length along the axis of rotation. In this limit one can
work within the subspace of the nodeless (n = 0) eigen-
functions of the two dimensional harmonic oscillator,

ψn,m(ρ, φ) =

√
n!

π(n+ |m|)! ρ
|m|eimφLm

n (ρ2)e−ρ2/2, (3)

where n is the number of radial excitations,m is the quan-
tum number of the angular momentum, and Lm

n are the as-
sociated Laguerre polynomials. More specifically, the basis
states are ψ0,m(ρ, φ) = ρ|m|eimφe−ρ2/2/

√
π|m|!.

The strong confinement along the axis of rotation,
λ � 1, implies that the cloud is in its lowest state of
motion along this axis, and the problem thus becomes ef-
fectively two dimensional, as the degrees of freedom along
the z-axis are frozen out. Therefore, the order parameter
Ψ(r) can be expanded in the product states Ψ0,m(r) =
ψ0,m(ρ, φ)φ0(z), where φ0(z) is the ground state of the
one dimensional harmonic oscillator.

Under the above conditions, as shown initially by
Bertsch and Papenbrock [17] using numerical diagonaliza-
tion, the interaction energy of the gas in the lowest state
is, for 2 ≤ L ≤ N ,

EL,N = γ(N − L/2 − 1)/
√

2π, (4)
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Fig. 1. Schematic diagram which shows the energy of the gas
in the rotating frame as function of the angular momentum per
atom l for different frequencies of rotation Ω. On the top graph,
for Ω = Ω1, the derivative of the energy at l = 1 vanishes. For
Ω = Ω2 the energy at l = 0 equals that at l = 1. Finally,
for Ω = Ω3 the derivative of the energy at l = 0 vanishes.
Our study shows that Ω1 < Ω2 < Ω3, and also that the energy
bents downward at both l = 0 and l = 1. All these observations
have crucial consequences on the formation and stability of a
single vortex state.

where L is the total angular momentum, and therefore it
varies linearly with L. Reference [19] has shown analyti-
cally that this equation is exact to first order in γ.

Therefore, if F = E − LΩ is the total energy of the
gas in the rotating frame, where E = L+EL,N is the total
energy in the rest frame then to first order in γ (henceforth
the energy is measured with respect to the energy of the
lowest state and terms of order 1/N are neglected), F/N =
(1 − γ/2

√
2π −Ω) l, where l = L/N . The above equation

implies that the critical frequency for rotation is

Ω(1)
c = 1 − γ/2

√
2π. (5)

At this value of Ω Butts and Rokhsar [14] predict that
the gas undergoes a discontinuous transition from a non
rotating state to a state with a vortex located at the center
of the trap. In the present study we calculate the energy
to next order for 0 ≤ l ≤ 1 examining how this picture
is modified. On the other hand, for l > 1 where more
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Fig. 2. The five diagrams which contribute to the energy of
the gas to order γ2 and up to l3/2, for 1 � L � N . The
unprimed (primed) numbers denote the angular momentum m
of the states with zero (any nonzero) radial excitations, n = 0
(n ≥ 1). For the states with m < 0, n can also be zero. The
dotted lines denote the interaction.

than one vortices are present, calculation of the energy to
lowest order in γ suffices to determine their stability.

3 Calculation of energy in second order
perturbation theory

We use now second-order perturbation theory to calcu-
late the interaction energy to next order, i.e., to γ2. In a
similar method reference [20] has calculated the low-lying
excitations of the system in the limit of low angular mo-
mentum. In our study we use the results of reference [18]
which has studied both regimes of low (1 � L� N) and
high (1 � N−L� N) angular momentum. Starting with
1 � L � N , since we need both the slope, as well as the
curvature of the energy (which is given by a term of order
l3/2 in this case), the order parameter is, up to the desired
order,

Ψ = c0Ψ0,0 + c2Ψ0,2 + c3Ψ0,3, (6)

where |c0|2 = 1 − l/2 + l3/2/3, |c2|2 = l/2 − l3/2, and
|c3|2 = 2l3/2/3. The five diagrams which contribute to the
energy to second order in γ and up to l3/2 are shown in
Figure 2. Conservation of the angular momentum in the
collisions (the interaction is spherically-symmetric) im-
plies that the only processes which have a nonzero con-
tribution to the energy are the ones where the angular
momentum is conserved in each vertex and are shown in
this figure, as well as in Figures 3 and 4.

For example, the contribution of the top left diagram
to the energy per particle is equal to

∞∑

n=1

|〈Ψ0,0, Ψ0,0|Vint|Ψ0,0, Ψn,0〉|2
N(ε0,0 − εn,0)

=

−
(
1 − l/2 + l3/2/3

)3

(NU0)2
∞∑

n=1

|I0,n
0,0 |2

εn,0 − ε0,0
, (7)

where I0,n
0,0 =

∫
Ψ∗

0,0Ψ
∗
0,0Ψ0,0Ψn,0 dr is the overlap integral

between the corresponding states. This always involves
three states with zero radial excitations and one state with
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Fig. 3. The five diagrams which contribute to the energy of
the gas to order γ2 and up to l2, for 1 � N − L � N .
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Fig. 4. The nine diagrams which contribute to the energy of
the gas to order γ2 and to l2, for 1 � N − L � N .

n radial excitation(s). Also εn,m = 2n + |m| + 1 + λ/2 is
the eigenenergy of the states Ψn,m(r) = ψn,m(ρ, φ)φ0(z)
and N0 = N |c0|2 is the occupancy of the state Ψ0,0. In
equation (7) there is a factor of 1/2 from the interaction
[Eq. (1)] that is cancelled by a factor of 2 that comes from
the symmetrization of the wavefunction.

The sum in equation (7) is over all the excited states
with m = 0 and n ≥ 1 (in other cases where intermedi-
ate states with negative values of m are involved, n ≥ 0).
However, the series converges rapidly because of the over-
lap integrals which decrease with increasing n. Consider-
ing the first fifteen excited states, n = 1, . . . , 15 we get an
accuracy that is higher that machine accuracy and find
that

E/N ≈
(
1 − γ/2

√
2π

)
l

−
(
0.0916− 0.0883 l+ 0.0156 l3/2

)
γ2. (8)

As a final step we express E/N as function of the ex-
pectation value of the angular momentum per particle
〈l〉 ≡ 〈Ψ̃ |L̂|Ψ̃〉/〈Ψ̃ |Ψ̃〉. Here Ψ̃ =

∑
m cmΨ̃m, with Ψ̃m =

Ψ0,m +γ
∑

n�=0 dn,mΨn,m being the perturbed basis states.
The corrections of order γ in the basis states introduce a
correction of order γ2 in 〈l〉 − l.

To calculate 〈l〉 we start from the Gross-Pitaevskii
equation and make use of the orthogonality between the
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states Ψn,m finding dn,m = −2π
∫ |Ψ0,m|2 Ψ0,m Ψ∗

n,m dr/n.
This formula implies that 〈l〉 = l[1 − 0.0405 γ2 −
0.0018 γ2 l1/2], or l = 〈l〉[1 + 0.0405 γ2 + 0.0018 γ2 〈l〉1/2].
Combining this result with equation (8) we find

E/N ≈
(
1 − γ/2

√
2π

)
〈l〉

−
(
0.0916− 0.1288 〈l〉+ 0.0138 〈l〉3/2

)
γ2. (9)

From equation (9) we conclude that the critical frequency
of rotation is, to order γ2,

Ω(2)
c ≡ Ω3 = 1 − γ/2

√
2π + 0.1288 γ2 + O(γ3). (10)

Also E/N (as well as F/N) has a downward curvature.
Following a similar method we perform the same anal-

ysis for 1 � N −L� N . There is no term of order l̃3/2 in
this case and the two leading terms are of order l̃ and l̃2,
where l̃ = 1− l. The corresponding order parameter is [18]

Ψ = c0Ψ0,0 + c1Ψ0,1 + c2Ψ0,2 + c3Ψ0,3, (11)

where |c0|2 = 2l̃ − 3l̃2/2, |c1|2 = 1 − 3l̃ + 27l̃2/8, |c2|2 =
l̃ − 9l̃2/4, and |c3|2 = 3l̃2/8.

The five diagrams which contribute to the interaction
energy linearly and quadratically in l̃ are shown in Fig-
ure 3, while the ones in Figure 4 contribute only quadrati-
cally. Again, considering the first fifteen excited states we
find

E/N ≈
(
1 − γ/2

√
2π

)
(1 − l̃)

−
(
0.0111 + 0.1024 l̃+ 0.7654 l̃2

)
γ2. (12)

In this case 〈l̃〉 = l̃[1 + 0.0780 γ2 − 0.0811 l̃ γ2], or l̃ =
〈l̃〉[1− 0.0780 γ2 + 0.0811 〈l̃〉 γ2]. The energy, expressed as
function of 〈l̃〉 is therefore

E/N ≈
(
1 − γ/2

√
2π

)(
1 − 〈l̃〉

)

−
(
0.0111 + 0.0244 〈l̃〉 + 0.8465 〈l̃〉2

)
γ2. (13)

The frequency at which the derivative vanishes is thus

Ω1 = 1 − γ/2
√

2π + 0.0244 γ2 + O(γ3). (14)

Again, E/N (and F/N) has a downward curvature.
Finally, another relevant frequency of rotation is the

one where the energy in the rotating frame for 〈l〉 = 0
equals that for 〈l〉 = 1, and, in agreement with refer-
ence [21], this turns out to be

Ω2 = 1 − γ/2
√

2π + 0.0805 γ2 + O(γ3). (15)

4 Discussion of the results

The angular momentum plotted on the horizontal axis of
Figure 1 is directly related to the position of the vortex,
since for an off-center vortex state 0 ≤ l ≤ 1 [22]. There-
fore, as l increases in Figure 1 the vortex moves from an
infinite distance away from the trap (l = 0) to its center
(l = 1). Knowing this, and having calculated the energy
as function of the angular momentum in the two limit-
ing cases, we can extract valuable information about the
formation and stability of a single vortex state. Since our
Hamiltonian is rotationally invariant, it commutes with
the angular momentum and therefore the angular momen-
tum is a good quantum number. In that respect, any con-
figuration is stable, however the interesting question is the
stability against weak perturbations.

For example, in the presence of a small thermal com-
ponent in the gas which interacts with the condensate ex-
changing angular momentum and energy with it, a vortex
state is stable/metastable as long as its energy in the ro-
tating frame has an absolute/local minimum [23]. In the
limit of weak interactions that we consider here, the energy
is dominated by the oscillator energy and the energy bar-
riers are small. As a result, these systems cannot support
persistent currents [i.e., F (l) does not have any metastable
minimum at any l 
= 0 when Ω = 0]. Still, when Ω 
= 0,
F (l) develops in principle local minima and in what fol-
lows, we consider a vortex state as a stable configuration
provided that F (l) has a local/absolute minimum (hence-
forth l is to be identified as 〈l〉).

Our results here are exact for weak interactions and for
values of the angular momentum close to zero and unity
(note that analytic expansions of the energy are possible
only in these two limits). Still, our expansion strongly sug-
gests that the schematic form of F (l) shown in Figure 1
extends over all the intermediate values of the angular
momentum, without any local minima in between.

As shown in Figure 1 for any frequency Ω between Ω1

and Ω2, F (l) has a local minimum at l = 1. In other words
a vortex that is located at the center of the trap first be-
comes stable locally with increasing Ω. This behavior is
qualitatively the same as in reference [16] where the oppo-
site limit of strong interaction was considered. As shown
in the same graph, the slope of F (l) increases discontinu-
ously as one crosses the point l = 1. This increase is on the
order of γ, equal to 11γ/32

√
2π [18]. This fact guarantees

that F (l) has a local/absolute minimum at l = 1 for all
values of Ω between Ω1 and Ω3.

According to our study, if one first cools down be-
low the condensation temperature and then rotates, the
gas will undergo a discontinuous transition from a non-
rotating state to a state with a vortex in the middle of the
cloud for Ω = Ω3. In the reverse process as Ω decreases,
the gas will make a discontinuous transition from l = 1 to
l = 0 at anΩ = Ω1, withΩ1 < Ω3. In the other physically-
relevant situation, if one first rotates with some Ω = Ω0

and then cools down below the condensation temperature,
the gas may actually reach the state with a (stable) cen-
tered vortex for any value of Ω0 between Ω1 and Ω3.
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